

This list compiles all scientific papers published that utilize Corning® Advanced-Flow™ Reactor (AFR) Technology. We express our thanks to all authors who used our technology in their experiments. If you would like to include your published paper using AFR Technology, please contact us at reactors@corning.com and we will be pleased to review your submission for inclusion in this document.

1. Reactors: Goal, Design & Characterization

As an on-going effort toward process intensification, Corning developed Flow Reactors to support the synthetic industry.¹ For this, switching the synthetic paradigm² from traditional batch to flow chemistry, was pursued.³ Corning mindset being focused on industrialization, the reactors were designed towards high scale production, ^{4–10} with plethora of applications.¹¹

2. Reactors Engineering & Characterization

Using Corning's expertise, reactors were designed either in resistant glass¹² or Silicon Carbide (no chemical limitation found yet).¹³. The mass transfer properties,¹⁴ the heat exchange,¹⁵ pressure drop,¹⁶ residence time distribution¹⁷ were fully characterized for single^{18,19} or dual phase systems.^{20–22} The hydrodynamic properties of liquid and gas liquid²³ flow were published.^{24,25}

The same work was also carried out for the Low-Flow Reactor.²⁶

To help with industrialization, the design of reactors ensured a scalable system such as liquid/liquid systems from Low-Flow to G1²⁷ and up to production.^{28,29} The whole concept behind flow reactor and scale-up has been summarized.³⁰

3. Published applications in Corning AFR

3.1. Photochemistry

Photochemistry is possible due to an LED system, used from laboratory to industrial scale. ^{31–33} The multiphase system with photochemistry was also characterized. ³⁴

3.1.1. Gas photochemistry: Oxygen oxidation.

For alpha-terpinene oxidation, optimizing photochemistry guidelines was published.³⁵ β-dicarbonyl compounds were enantioselectively oxidated.³⁶ Sulfured Methionine amino acid was oxidisized³⁷ and the protocol was extended so that mustard gas can be neutralized by air.³⁸

^{*}Please note this publication list is provided for reference only and does not constitute an endorsement by Corning Incorporated of any particular publication, institution, author, product or method.

3.1.2. Materials

Gold nanoparticles can be synthesized, showing the multi-purpose possibility of the reactor.³⁹ On top of it, daily use of *aqua regia* showed the chemical tolerance of the reactor.

3.1.3. Halogen Photo-Chemistry

lodoperlfuoroalkylation of alkenes were carried out.⁴⁰ Benzylic bromination reaction was also successfully performed⁴¹. Another example on G1 scale using NBS was successful.⁴²

3.1.4. Dangerous species "in situ"

Dangerous species can be generated and used *in situ*, maximizing safety. Amongst them, Bromine can be generated and reacted *in situ* at Laboratory⁴³ and industrial scale.^{44,45} Similarly nitrosyl chloride can perform photonitrisation.⁴⁶

3.1.5. Cycloaddition

Selective photoredox transformation can be performed.⁴⁷ [2+2] Cycloaddition reaction, supported *in silico*, were performed in G1 reactors.⁴⁸ Cerium also catalyzed Cycloalkanols Cycloaddition⁴⁹ or also functionalize alkanes.⁵⁰

Using renewable source chemicals, γ-butyrolactone were synthesized.⁵¹

3.1.6. Organometallics

Using Nickel catalyst, arylhydrazines were synthesized.⁵² Using inline NMR monitoring, Nickel Negishi coupling reactions was also carried out.⁵³

3.1.7. Green Chemistry

Direct metal free organocatalytic arylation coupling to Aryl bromide was performed.⁵⁴

3.2. Thermal Chemistry

3.2.1. Classical Chemistry/Batch to Flow

Plant design and economic study of Ibuprofen and artemisinin was evaluated in flow.⁵⁵The use of the appropriate analytical tools (such as Raman spectroscopy) is an asset to ensure a full optimization of process in flow.⁵⁶

Collecting internal data, a Moffat-Swern oxidation was translated from Batch to Flow Chemistry.⁵⁷ This showcase highlights the number of possible reactions which can be used in flow. The exothermic chlorination of a compound with thionyl Chloride was performed from Laboratory to industrial scale both in simulation and experimentally.⁵⁸

Benzoic acid alkylation reaction was performed in flow. ⁵⁹ Tetrazole reaction was done. ⁶⁰

3.2.2. Synthesis of dangerous chemicals

Using flow reactors, dangerous species can be synthesized, minimizing risks.

3.2.2.1. Nitric acid use.

Alcohol esterification with nitrous acid, while being a very exothermic process, could be carried safely in G1 Reactors to be turned into synthetically useful alkyl nitrites. 61 Similar nitration reactions can be performed effectively. 62

3.2.2.2. Azide compounds,

While dangerous but synthetically interesting, have been successfully implemented in AFR. Monomethylhydrazine was synthesised. 63 Minimizing the danger with hydrazoic acid, there is a synthesis of Diphenylphosphoryl azide. 64

^{*}Please note this publication list is provided for reference only and does not constitute an endorsement by Corning Incorporated of any particular publication, institution, author, product or method.

Using dangerous azides, Ritalin was synthesized. Similarly, in situ generated diazomethane was used in a synthetic way. Cyclopropanation was successfully implemented through DoE experiment. 67

3.2.2.3. Use of Gas.

Using oxygen, benzylic oxidation was carried out in metal free and reagent recyclable conditions.⁶⁸ Oxygen was also helped with the hydroxylation of ketones and ketamine synthesis.⁶⁹

Ozonolysis, very dangerous with deadly gas even at trace level, was performed in a Low Flow Reactor. ⁷⁰ Successful case was published at kilo lab scale. ⁷¹

On the other hand, reduction via hydrogenation could be performed too.^{72,73} For hydrogenation reaction, a system with Pd allowed a temporary Pd deposit in situ.⁷⁴

Challenging Bunsen reaction (Gas SO₂/liquid) using was industrially implemented. ^{75,76}

Synthesis of anti-bacterial agent performic peracid (peracid) was successfully carried out.⁷⁷

The electrophilic α -aminohydroxylation of ketones was carried out by preparing *in situ* the 1-chloro-1-nitrosocyclopentane reagent.⁷⁸

3.2.3. Green Process

Using flow chemistry, a strong emphasis on Green Chemistry is pushed. 79,80

3.2.3.1. Greener conditions

First, existing application are optimized in a more ecofriendly way. Tertiary Ketone were hydroxylated without need for metal.⁸¹

Cyclic organic carbonates were synthesized⁸² and solvent-free options were also developed.⁸³ Solvent free biphasic alcohol oxidation was carried out and scaled up in a LF.⁸⁴ Using bleach, alcohol were oxidized and scale up in a biphasic mixture in a metal free process.⁸⁵ LAH reduction of esters into aldehyde was performed in mild conditions.⁸⁶

3.2.3.2. Sustainable Material

Synthesis from green glycerol towards oxiranes were performed. Biodiesel could be synthesized from cooking oil.⁸⁷ Similarly, biodiesel additive STBE was synthesized from bio-sourced glycerol.^{88,89}

3.2.3.3. Biosynthesis

The bioprocess of lipase β -catalyzed isoamyl acetate synthesis was carried out in flow.⁹⁰

3.2.4. Material Chemistry/Nanoparticles

Iron oxide nanoparticles were synthesized.⁹¹ Further characterization of the equipment and synthesis of Iron nanoparticles was successfully carried out.

Working on asteroids, valuable metals were extracted.⁹²

^{© 2021} Corning Incorporated. All Rights Reserved.

^{*}Please note this publication list is provided for reference only and does not constitute an endorsement by Corning Incorporated of any particular publication, institution, author, product or method.

4. Bibliography

- (1) Chevalier, B. Corning Microreaction Technology, a Process Intensification Solution Designed for Industrial Production. *Chemistry Today* **2008**, *26* (5), 6–7.
- (2) Gérardy, R.; Emmanuel, N.; Toupy, T.; Kassin, V.-E.; Tshibalonza, N. N.; Schmitz, M.; Monbaliu, J.-C. M. Continuous Flow Organic Chemistry: Successes and Pitfalls at the Interface with Current Societal Challenges. *Eur. J. Org. Chem.* **2018**, *2018* (20–21), 2301–2351. https://doi.org/10.1002/ejoc.201800149.
- (3) Calabrese, G. S.; Pissavini, S. From Batch to Continuous Flow Processing in Chemicals Manufacturing. *AIChE J.* **2011**, *57* (4), 828–834. https://doi.org/10.1002/aic.12598.
- (4) Lavric, D.; Lobet, O.; Guidat, R.; Vizza, A.; Jiang, Y. Corning® Advanced-FlowTM
 Reactors: Innovation Drives Continuous
 Flow Manufacturing of Chemicals.

 Pharma Tech Japan 2017, 33 (12), 68–77.
- (5) Schmidt, F.; Chevalier, B. The Future Flows Through Corning® Advanced-Flow™ Glass Reactors. Engineered to Move You to Market Faster and More Efficiently. *Chemistry Today* **2009**, *27* (2), 4–5.
- (6) Roberge, D. M.; Gottsponer, M.; Eyholzer, M.; Kockmann, N. Industrial Design, Scale-up and Use of Microreactors. Chemistry Today 2009, 27 (4), July-August.
- (7) Barthe, P.; Guermeur, C.; Lobet, O.; Moreno, M.; Woehl, P.; Roberge, D. M.; Bieler, N.; Zimmermann, B. Continuous Multi-Injection Reactor for Multipurpose Production - Part I. Chem. Eng. Technol. 2008, 31 (8), 1146–1154. https://doi.org/10.1002/ceat.200800132.
- (8) Roberge, D. M.; Bieler, N.; Mathier, M.; Eyholzer, M.; Zimmermann, B.; Barthe, P.; Guermeur, C.; Lobet, O.; Moreno, M.; Woehl, P. Development of an Industrial

- Multi-Injection Microreactor for Fast and Exothermic Reactions Part II. *Chem. Eng. Technol.* **2008**, *31* (8), 1155–1161. https://doi.org/10.1002/ceat.200800131.
- (9) Dann, E.; Schmidt, F.; Chevalier, B. Corning® Advanced-Flow™ Glass Reactors: Now It Is Simple to Scale up Production. *Chemistry Today* **2010**, *28* (1), 24–25.
- (10) Dann, E.; Schmidt, F.; Chevalier, B. Corning® Advanced-Flow™ Glass Reactors - the Benefits Are Clear. Chemistry Today 2009, 27 (4), 12–13.
- (11) Guidat, R.; Vizza, A.; Jiang, Y. Advanced-Flow Reactor Technologies Makes Continuous-Flow Industrial Production Real. *Specialty Chemical Magazine* **2015**, 35 (11), 30–32.
- (12) Chevalier, B.; Lavric, E. D.; Cerato-Noyerie, C.; Horn, C. R.; Woehl, P. Microreactors for Industrial Multi-Phase Applications. Test Reactions to Develop Innovative Glass Microstructure Designs. Chemistry Today 2008, 26 (2), 38–42.
- (13) Lobet, O.; Vizza, A. SiC Advanced-Flow Reactors for Highly Corrosive Media. *Specialty Chemical Magazine* **2016**, *36* (08), 32–35.
- (14) Lavric E. D.; Cerato-Noyerie C. Mass
 Transfer in Gas-Liquid Flow in Corning®
 Advanced-Flow™ Reactors. *Chemical*Engineering Transactions **2012**, 29, 979–
 984.
 https://doi.org/10.3303/CET1229164.
- (15) Lavric, D. Thermal Performance of Corning Glass Microstructures, Heat Transfer and Fluidic Flow in Microscale III. Conference, Hilton Whistler, BC, Canada, ECI international 2008.
- (16) Moreau, M.; Di Miceli Raimondi, N.; Le Sauze, N.; Cabassud, M.; Gourdon, C. Pressure Drop and Axial Dispersion in Industrial Millistructured Heat Exchange Reactors. Chemical Engineering and Processing: Process Intensification 2015, 95, 54–62.

^{*}Please note this publication list is provided for reference only and does not constitute an endorsement by Corning Incorporated of any particular publication, institution, author, product or method.

- https://doi.org/10.1016/j.cep.2015.05.00 9.
- (17) Mikhail Chivilikhin; Lev Kuandykov;
 Carine Cerato-Noyerie; Pierre Woehl;
 Elena Daniela Lavric. Residence Time
 Distribution in Corning® AdvancedFlow™ Reactor. Experiment and
 Modelling. Chemical Engineering
 Transactions 2011, 25, 791–796.
 https://doi.org/10.3303/CET1125132.
- (18) Nieves-Remacha, M. J.; Kulkarni, A. A.; Jensen, K. F. OpenFOAM Computational Fluid Dynamic Simulations of Single-Phase Flows in an Advanced-Flow Reactor. *Ind. Eng. Chem. Res.* **2015**, *54* (30), 7543–7553. https://doi.org/10.1021/acs.iecr.5b0023 2.
- (19) Yang, M.; Yang, L.; Zheng, J.; Hondow, N.; Bourne, R. A.; Bailey, T.; Irons, G.; Sutherland, E.; Lavric, D.; Wu, K.-J. Mixing Performance and Continuous Production of Nanomaterials in an Advanced-Flow Reactor. *Chemical Engineering Journal* 2021, 128565. https://doi.org/10.1016/j.cej.2021.12856 5.
- (20) Nieves-Remacha, M. J.; Yang, L.; Jensen, K. F. OpenFOAM Computational Fluid Dynamic Simulations of Two-Phase Flow and Mass Transfer in an Advanced-Flow Reactor. *Ind. Eng. Chem. Res.* 2015, 54 (26), 6649–6659. https://doi.org/10.1021/acs.iecr.5b0048 0.
- (21) Nieves-Remacha, M. J.; Kulkarni, A. A.; Jensen, K. F. Hydrodynamics of Liquid–Liquid Dispersion in an Advanced-Flow Reactor. *Ind. Eng. Chem. Res.* **2012**, *51* (50), 16251–16262. https://doi.org/10.1021/ie301821k.
- (22) Chivilikhin M. S.; Soboleva V.; Kuandykov L.; Woehl P.; Lavric E. D. CFD Analysis of Hydrodynamic and Thermal Behaviour of Advanced-Flow[™] Reactors. Chemical Engineering Transactions 2010, 21,

- 1099–1104. https://doi.org/10.3303/CET1021184.
- (23) Nieves-Remacha, M. J.; Kulkarni, A. A.; Jensen, K. F. Gas-Liquid Flow and Mass Transfer in an Advanced-Flow Reactor. *Ind. Eng. Chem. Res.* **2013**, *52* (26), 8996–9010. https://doi.org/10.1021/ie4011707.
- (24) Wu, K.-J.; Nappo, V.; Kuhn, S.
 Hydrodynamic Study of Single- and TwoPhase Flow in an Advanced-Flow Reactor. *Ind. Eng. Chem. Res.* **2015**, *54* (30), 7554–
 7564.
 https://doi.org/10.1021/acs.iecr.5b0144
- (25) Nieves-Remacha, M. J.; Jensen, K. F. Mass Transfer Characteristics of Ozonolysis in Microreactors and Advanced-Flow Reactors. *Journal of Flow Chemistry* **2015**, *5* (3), 160–165. https://doi.org/10.1556/1846.2015.0001
- (26) Zhang, F.; Carine Cerato Noyerie; Pierre Woehl; Elena Daniela Lavric. Intensified Liquid/Liquid Mass Transfer in Corning® Advanced-Flow™ Reactors. *Chemical Engineering Transactions* **2011**, *24*, 1369–1374. https://doi.org/10.3303/CET1124229.
- (27) Woitalka, A.; Kuhn, S.; Jensen, K. F. Scalability of Mass Transfer in Liquid–Liquid Flow. *Chemical Engineering Science* **2014**, *116*, 1–8. https://doi.org/10.1016/j.ces.2014.04.03 6.
- (28) J. Jorda; Vizza, A. From Laboratory to Production: A Seamless Scale-Up. Speciality Chemicals Magazine **2012**, No. Nov., 19–21.
- (29) Lavric, E. D.; Woehl, P. Advanced-Flow[™] Glass Reactors for Seamless Scale-Up. *Chemistry Today* **2009**, *27* (3), 45–48.
- (30) Dong, Z.; Wen, Z.; Zhao, F.; Kuhn, S.; Noël, T. Scale-up of Micro- and Milli-Reactors: An Overview of Strategies, Design Principles and Applications.

^{*}Please note this publication list is provided for reference only and does not constitute an endorsement by Corning Incorporated of any particular publication, institution, author, product or method.

- Chemical Engineering Science: X **2021**, 100097. https://doi.org/10.1016/j.cesx.2021.1000 97.
- (31) Gauron, G.; Ao, J.; Gremetz, S.; Horn, C. R. Powerful Scalable Photochemistry: The Efficient Use of Light. *Chemistry Today* **2018**, *36* (4), 12–15.
- (32) Elgue, S.; Aillet, T.; Loubiere, K.; Conté, A.; Dechy-Cabaret, O.; Prat, L.; Horn, C. R.; Lobet, O.; Vallon, S. Flow Photochemistry: A Meso-Scale Reactor for Industrial Applications. *Chemistry Today* **2015**, *33* (5), 58–61.
- (33) Stankiewicz, A. I.; Nigar, H. Beyond Electrolysis: Old Challenges and New Concepts of Electricity-Driven Chemical Reactors. *React. Chem. Eng.* 2020, 5 (6), 1005–1016. https://doi.org/10.1039/D0RE00116C.
- (34) Roibu, A.; Horn, C. R.; Van Gerven, T.; Kuhn, S. Photon Transport and Hydrodynamics in Gas-Liquid Flow Part 2: Characterization of Bubbly Flow in an Advanced-Flow Reactor. ChemPhotoChem 2020, 4 (10), 5193– 5200.
 - https://doi.org/10.1002/cptc.202000066.
- (35) Horn, C. R.; Gremetz, S. A Method to Determine the Correct Photocatalyst Concentration for Photooxidation Reactions Conducted in Continuous Flow Reactors. *Beilstein J. Org. Chem.* **2020**, *16*, 871–879. https://doi.org/10.3762/bjoc.16.78.
- (36) Tang, X.-F.; Zhao, J.-N.; Wu, Y.-F.; Zheng, Z.-H.; Feng, S.-H.; Yu, Z.-Y.; Liu, G.-Z.; Meng, Q.-W. Enantioselective Photooxygenation of β-Dicarbonyl Compounds in Batch and Flow Photomicroreactors. *Org. Biomol. Chem.* 2019, *17* (34), 7938–7942. https://doi.org/10.1039/C9OB01379B.
- (37) Emmanuel, N.; Mendoza, C.; Winter, M.; Horn, C. R.; Vizza, A.; Dreesen, L.; Heinrichs, B.; Monbaliu, J.-C. M. Scalable

- Photocatalytic Oxidation of Methionine under Continuous-Flow Conditions. *Org. Process Res. Dev.* **2017**, *21* (9), 1435–1438. https://doi.org/10.1021/acs.oprd.7b0021
- (38) Emmanuel, N.; Bianchi, P.; Legros, J.; Monbaliu, J.-C. M. A Safe and Compact Flow Platform for the Neutralization of a Mustard Gas Simulant with Air and Light. *Green Chem.* **2020**, *22* (13), 4105–4115. https://doi.org/10.1039/D0GC01142H.
- (39) Bianchi, P.; Petit, G.; Monbaliu, J.-C. M. Scalable and Robust Photochemical Flow Process towards Small Spherical Gold Nanoparticles. *React. Chem. Eng.* **2020**, *5* (7), 1224–1236. https://doi.org/10.1039/D0RE00092B.
- (40) Rosso, C.; Williams, J. D.; Filippini, G.; Prato, M.; Kappe, C. O. Visible-Light-Mediated Iodoperfluoroalkylation of Alkenes in Flow and Its Application to the Synthesis of a Key Fulvestrant Intermediate. *Org. Lett.* **2019**, *21* (13), 5341–5345. https://doi.org/10.1021/acs.orglett.9b01 992.
- (41) Chen, Y.; de Frutos, O.; Mateos, C.; Rincon, J. A.; Cantillo, D.; Kappe, C. O. Continuous Flow Photochemical Benzylic Bromination of a Key Intermediate in the Synthesis of a 2-Oxazolidinone.

 ChemPhotoChem 2018, 2 (10), 906–912. https://doi.org/10.1002/cptc.201800114.
- (42) Waterford, M.; Saubern, S.; Hornung, C. H. Evaluation of a Continuous-Flow Photo-Bromination Using N-Bromosuccinimide for Use in Chemical Manufacture. *Aust. J. Chem.* 2021. https://doi.org/10.1071/CH20372.
- (43) Steiner, A.; Williams, J. D.; de Frutos, O.; Rincón, J. A.; Mateos, C.; Kappe, C. O. Continuous Photochemical Benzylic Bromination Using *in Situ* Generated Br 2: Process Intensification towards Optimal PMI and Throughput. *Green*

^{*}Please note this publication list is provided for reference only and does not constitute an endorsement by Corning Incorporated of any particular publication, institution, author, product or method.

- *Chem.* **2020**, *22* (2), 448–454. https://doi.org/10.1039/C9GC03662H.
- (44) Steiner, A.; Roth, P. M. C.; Strauss, F. J.; Gauron, G.; Tekautz, G.; Winter, M.; Williams, J. D.; Kappe, C. O. Multikilogram per Hour Continuous Photochemical Benzylic Brominations Applying a Smart Dimensioning Scale-up Strategy. *Org. Process Res. Dev.* **2020**, *24* (10), 2208–2216. https://doi.org/10.1021/acs.oprd.0c0023
- (45) Williams, J. D.; Gauron, G. Harnessing the Photochemistry of Bromine for Sustainable Manufacturing. RO 2020, No. 119. https://doi.org/10.32907/RO-119-9093.
- (46) Lebl, R.; Cantillo, D.; Kappe, C. O. Continuous Generation, in-Line Quantification and Utilization of Nitrosyl Chloride in Photonitrosation Reactions. React. Chem. Eng. 2019, 4 (4), 738–746. https://doi.org/10.1039/C8RE00323H.
- (47) Steiner, A.; Williams, J. D.; Rincón, J. A.; de Frutos, O.; Mateos, C.; Kappe, C. O. Implementing Hydrogen Atom Transfer (HAT) Catalysis for Rapid and Selective Reductive Photoredox Transformations in Continuous Flow: Eur. J. Org. Chem. 2019, 2019 (33), 5807–5811. https://doi.org/10.1002/ejoc.201900952.
- (48) Williams, J. D.; Nakano, M.; Gérardy, R.; Rincón, J. A.; de Frutos, Ó.; Mateos, C.; Monbaliu, J.-C. M.; Kappe, C. O. Finding the Perfect Match: A Combined Computational and Experimental Study toward Efficient and Scalable Photosensitized [2 + 2] Cycloadditions in Flow. Org. Process Res. Dev. 2019, 23 (1), 78–87. https://doi.org/10.1021/acs.oprd.8b0037
- (49) Hu, A.; Chen, Y.; Guo, J.-J.; Yu, N.; An, Q.; Zuo, Z. Cerium-Catalyzed Formal Cycloaddition of Cycloalkanols with Alkenes through Dual Photoexcitation. *J.*

- *Am. Chem. Soc.* **2018**, *140* (42), 13580–13585. https://doi.org/10.1021/jacs.8b08781.
- (50) Hu, A.; Guo, J.-J.; Pan, H.; Zuo, Z. Selective Functionalization of Methane, Ethane, and Higher Alkanes by Cerium Photocatalysis. Science 2018, 361 (6403), 668–672.
 - https://doi.org/10.1126/science.aat9750.
- (51) Gérardy, R.; Winter, M.; Horn, C. R.; Vizza, A.; Van Hecke, K.; Monbaliu, J.-C. M. Continuous-Flow Preparation of γ-Butyrolactone Scaffolds from Renewable Fumaric and Itaconic Acids under Photosensitized Conditions. *Org. Process Res. Dev.* **2017**, *21* (12), 2012–2017. https://doi.org/10.1021/acs.oprd.7b0031 4.
- (52) Mata, A.; Tran, D. N.; Weigl, U.; Williams, J. D.; Kappe, C. O. Continuous Flow Synthesis of Arylhydrazines via Nickel/Photoredox Coupling of Tert-Butyl Carbazate with Aryl Halides. *Chem. Commun.* 2020, 10.1039.DOCC06787C. https://doi.org/10.1039/DOCC06787C.
- (53) Abdiaj, I.; Horn, C. R.; Alcazar, J. Scalability of Visible-Light-Induced Nickel Negishi Reactions: A Combination of Flow Photochemistry, Use of Solid Reagents, and In-Line NMR Monitoring. J. Org. Chem. 2019, 84 (8), 4748–4753. https://doi.org/10.1021/acs.joc.8b02358.
- (54) Pallini, F.; Sangalli, E.; Sassi, M.; Roth, P. M. C.; Mattiello, S.; Beverina, L. Selective Photoredox Direct Arylations of Aryl Bromides in Water in a Microfluidic Reactor. *Org. Biomol. Chem.* **2021**, *19* (13), 3016–3023. https://doi.org/10.1039/D1OB00050K.
- (55) Jolliffe, H. G.; Gerogiorgis, D. I. Plantwide Design and Economic Evaluation of Two Continuous Pharmaceutical Manufacturing (CPM) Cases: Ibuprofen and Artemisinin. *Computers & Chemical Engineering* **2016**, *91*, 269–288.

^{*}Please note this publication list is provided for reference only and does not constitute an endorsement by Corning Incorporated of any particular publication, institution, author, product or method.

- https://doi.org/10.1016/j.compchemeng. 2016.04.005.
- (56) Roberto, M. F.; Dearing, T. I.; Martin, S.; Marquardt, B. J. Integration of Continuous Flow Reactors and Online Raman Spectroscopy for Process Optimization. *J Pharm Innov* 2012, 7 (2), 69–75. https://doi.org/10.1007/s12247-012-9128-8.
- (57) Bleie, O.; Roberto, M. F.; Dearing, T. I.; Branham, C. W.; Kvalheim, O. M.; Marquardt, B. J. Moffat-Swern Oxidation of Alcohols: Translating a Batch Reaction to a Continuous-Flow Reaction. *Journal* of Flow Chemistry 2015, 5 (3), 183–189. https://doi.org/10.1556/1846.2015.0002 5.
- (58) Dobrosavljevic, I.; Schaer, E.; Commenge, J. M.; Falk, L. Intensification of a Highly Exothermic Chlorination Reaction Using a Combined Experimental and Simulation Approach for Fast Operating Conditions Prediction. *Chemical Engineering and Processing: Process Intensification* **2016**, 105, 46–63. https://doi.org/10.1016/j.cep.2016.04.00 7.
- (59) Penverne, C.; Hazard, B.; Rolando, C.; Penhoat, M. Scale-up Study of Benzoic Acid Alkylation in Flow: From Microflow Capillary Reactor to a Milliflow Reactor. *Org. Process Res. Dev.* **2017**, *21* (11), 1864–1868. https://doi.org/10.1021/acs.oprd.7b0024 6.
- (60) Maralla, Y.; Sonawane, S.; Kashinath, D.; Pimplapure, M.; Paplal, B. Process Intensification of Tetrazole Reaction through Tritylation of 5-[4'-(Methyl) Biphenyl-2-Yl] Using Microreactors. Chemical Engineering and Processing: Process Intensification 2017, 112, 9–17. https://doi.org/10.1016/j.cep.2016.12.00 3.
- (61) Monbaliu, J.-C. M.; Jorda, J.; Chevalier, B.; Stevens, C. V.; Morvan, B. Continuous-

- Flow Production of Alkyl Nitrites. *Chemistry Today* **2011**, *29* (3), 50–52.
- (62) Braune, S.; Pochlauer, P.; Reintjens, R.; Steinhofer, S.; Winter, M.; Lobet, O.; Guidat, R.; Woehl, P.; Guermeur, C. Selective Nitration in a Microreactor for Pharmaceutical Production under CGMP Conditions. Chemistry Today 2009, 27, 26–29.
- (63) Le, D. M.; Bougrine, A. J.; Duclos, O.; Pasquet, V.; Delalu, H. A New Strategy for the Synthesis of Monomethylhydrazine Using the Raschig Process. 2: Continuous Synthesis of Stoichiometric Monochloramine Using the Microreactor Technology. *Reac Kinet Mech Cat* **2020**, 130 (1), 17–34. https://doi.org/10.1007/s11144-020-01761-4.
- (64) Born, S. C.; Edwards, C. E. R.; Martin, B.; Jensen, K. F. Continuous, on-Demand Generation and Separation of Diphenylphosphoryl Azide. *Tetrahedron* **2018**, *74* (25), 3137–3142. https://doi.org/10.1016/j.tet.2018.01.02 6.
- (65) Gérardy, R.; Winter, M.; Vizza, A.; Monbaliu, J.-C. M. Assessing Inter- and Intramolecular Continuous-Flow Strategies towards Methylphenidate (Ritalin) Hydrochloride. *React. Chem. Eng.* **2017**, *2* (2), 149–158. https://doi.org/10.1039/C6RE00184J.
- (66) Rossi, E.; Woehl, P.; Maggini, M. Scalable in Situ Diazomethane Generation in Continuous-Flow Reactors. *Org. Process Res. Dev.* 2012, 16 (5), 1146–1149. https://doi.org/10.1021/op200110a.
- (67) Klöpfer, V.; Eckl, R.; Floß, J.; Roth, P.; Reiser, O.; Barham, J. P. Catalyst-Free, Scalable Heterocyclic Flow Photocyclopropanation. *Green Chem.* 2021, 10.1039.D1GC01624E. https://doi.org/10.1039/D1GC01624E.
- (68) Yun, L.; Zhao, J.; Tang, X.; Ma, C.; Yu, Z.; Meng, Q. Selective Oxidation of Benzylic

^{*}Please note this publication list is provided for reference only and does not constitute an endorsement by Corning Incorporated of any particular publication, institution, author, product or method.

- Sp ³ C–H Bonds Using Molecular Oxygen in a Continuous-Flow Microreactor. *Org. Process Res. Dev.* **2021**, acs.oprd.1c00080. https://doi.org/10.1021/acs.oprd.1c0008 0.
- (69) Kassin, V.-E. H.; Gérardy, R.; Toupy, T.; Collin, D.; Salvadeo, E.; Toussaint, F.; Van Hecke, K.; Monbaliu, J.-C. M. Expedient Preparation of Active Pharmaceutical Ingredient Ketamine under Sustainable Continuous Flow Conditions. *Green Chem.* 2019, 21 (11), 2952–2966. https://doi.org/10.1039/C9GC00336C.
- (70) Lee, K.; Lin, H.; Jensen, K. F. Ozonolysis of Quinoline and Quinoline Derivatives in a Corning Low Flow Reactor. *React. Chem. Eng.* 2017, 2 (5), 696–702. https://doi.org/10.1039/C7RE00084G.
- (71) Vaz, M.; Courboin, D.; Winter, M.; Roth, P. M. C. Scale-Up of Ozonolysis Using Inherently Safer Technology in Continuous Flow under Pressure: Case Study on β-Pinene. *Org. Process Res. Dev.* 2021, acs.oprd.1c00008. https://doi.org/10.1021/acs.oprd.1c00008.
- (72) Buisson, B.; Donegan, S.; Wray, D.;
 Parracho, A.; Gamble, J.; Caze, P.; Jorda,
 J.; Guermeur, C. Slurry Hydrogenation in
 a Continuous Flow Reactor for
 Pharmaceutical Application. *Chemistry Today* **2009**, *27* (6), 12–16.
- (73) Salique, F.; Musina, A.; Winter, M.; Yann, N.; Roth, P. M. C. Continuous Hydrogenation: Triphasic System Optimization at Kilo Lab Scale Using a Slurry Solution. Front. Chem. Eng. 2021, 3, 701910. https://doi.org/10.3389/fceng.2021.7019 10.
- (74) Horn, C. R.; Cerato-Noyerie, C. A PdCl2 -Based Hydrogenation Catalyst for Glass Microreactors. *Journal of Flow Chemistry* 2014, 4 (3), 110–112. https://doi.org/10.1556/JFC-D-13-00036.

- (75) Moniri, A.; Wang, H.; Wu, X. (Eric).
 Application of Corrosion-Resistant
 Corning Advanced-Flow Reactors for
 Multiphase Bunsen Reaction Part One:
 Investigation on SO2 Absorption.
 International Journal of Petrochemical
 Science & Engineering 2019, 4 (4), 122–
 136.
- (76) Moniri, A.; Wang, H.; Wu, X. (Eric). Application of Corrosion-Resistant Corning Advanced-Flow Reactors for Multiphase Bunsen Reaction Part Two: Investigation on Multiphase Reaction. International Journal of Petrochemical Science & Engineering 2019, 4 (4), 153– 160.
- (77) Gaikwad, S. M.; Jolhe, P. D.; Bhanvase, B. A.; Kulkarni, A.; Patil, V. S.; Pimplapure, M. S.; Suranani, S.; Potoroko, I.; Sonawane, S. H.; Sonawane, S. S. Process Intensification for Continuous Synthesis of Performic Acid Using Corning® Advanced-Flow™ Reactors. Green Processing and Synthesis 2017, 6 (2). https://doi.org/10.1515/gps-2016-0147.
- (78) Kassin, V.-E. H.; Morodo, R.; Toupy, T.; Jacquemin, I.; Van Hecke, K.; Robiette, R.; Monbaliu, J.-C. M. A Modular, Low Footprint and Scalable Flow Platform for the Expedient α-Aminohydroxylation of Enolizable Ketones. *Green Chem.* 2021, 10.1039.D0GC04395H. https://doi.org/10.1039/D0GC04395H.
- (79) Morodo, R.; Gérardy, R.; Petit, G.; Monbaliu, J.-C. M. Continuous Flow Upgrading of Glycerol toward Oxiranes and Active Pharmaceutical Ingredients Thereof. *Green Chem.* 2019, 21 (16), 4422–4433. https://doi.org/10.1039/C9GC01819K.
- (80) Marus, G. A. The Application of Green Chemistry and Engineering to Novel Sustainable Solvents and Processes. PhD Thesis Georgia Institute of Technology 2012.

^{*}Please note this publication list is provided for reference only and does not constitute an endorsement by Corning Incorporated of any particular publication, institution, author, product or method.

- (81) Kassin, V.-E. H.; Toupy, T.; Petit, G.; Bianchi, P.; Salvadeo, E.; Monbaliu, J.-C. M. Metal-Free Hydroxylation of Tertiary Ketones under Intensified and Scalable Continuous Flow Conditions. *J Flow Chem* 2020, 10 (1), 167–179. https://doi.org/10.1007/s41981-019-00073-6.
- (82) Gérardy, R.; Estager, J.; Luis, P.; Debecker, D. P.; Monbaliu, J.-C. M. Versatile and Scalable Synthesis of Cyclic Organic Carbonates under Organocatalytic Continuous Flow Conditions. *Catal. Sci. Technol.* **2019**, *9* (24), 6841–6851. https://doi.org/10.1039/C9CY01659G.
- (83) Wang, Z.; Gérardy, R.; Gauron, G.; Damblon, C.; Monbaliu, J.-C. M. Solvent-Free Organocatalytic Preparation of Cyclic Organic Carbonates under Scalable Continuous Flow Conditions. *React. Chem. Eng.* 2019, 4 (1), 17–26. https://doi.org/10.1039/C8RE00209F.
- (84) Peer, M.; Weeranoppanant, N.; Adamo, A.; Zhang, Y.; Jensen, K. F. Biphasic Catalytic Hydrogen Peroxide Oxidation of Alcohols in Flow: Scale-up and Extraction. *Org. Process Res. Dev.* **2016**, *20* (9), 1677–1685. https://doi.org/10.1021/acs.oprd.6b0023 4.
- (85) Zhang, Y.; Born, S. C.; Jensen, K. F. Scale-Up Investigation of the Continuous Phase-Transfer-Catalyzed Hypochlorite Oxidation of Alcohols and Aldehydes. Org. Process Res. Dev. 2014, 18 (11), 1476–1481. https://doi.org/10.1021/op500158h.
- (86) Ducry, L.; Roberge, D. M. Dibal-H Reduction of Methyl Butyrate into Butyraldehyde Using Microreactors. *Org. Process Res. Dev.* 2008, 12 (2), 163–167. https://doi.org/10.1021/op7002002.
- (87) Suranani, S.; Maralla, Y.; Gaikwad, S. M.; Sonawane, S. H. Process Intensification Using Corning® Advanced-Flow™ Reactor

- for Continuous Flow Synthesis of Biodiesel from Fresh Oil and Used Cooking Oil. *Chemical Engineering and Processing - Process Intensification* **2018**, 126, 62–73. https://doi.org/10.1016/j.cep.2018.02.01
- (88) Monbaliu, J.-C. M.; Winter, M.; Chevalier, B.; Schmidt, F.; Jiang, Y.; Hoogendoorn, R.; Kousemaker, M. A.; Stevens, C. V. Effective Production of the Biodiesel Additive STBE by a Continuous Flow Process. *Bioresource Technology* 2011, 102 (19), 9304–9307. https://doi.org/10.1016/j.biortech.2011. 07.007.
- (89) Monbaliu, J.-C. M.; Winter, M.; Chevalier, B.; Schmidt, F.; Jiang, Y.; Hoogendoorn, R.; Kousemaker, M. A.; Stevens, C. V. Feasibility Study for Industrial Production of Fuel Additives from Glycerol. Chemistry Today 2010, 28 (4), 8–11.
- (90) Novak, U.; Lavric, D.; Žnidaršič-Plazl, P. Continuous Lipase B-Catalyzed Isoamyl Acetate Synthesis in a Two-Liquid Phase System Using Corning® AFR™ Module Coupled with a Membrane Separator Enabling Biocatalyst Recycle. *Journal of Flow Chemistry* 2016, 6 (1), 33–38. https://doi.org/10.1556/1846.2015.0003 8.
- (91) Suryawanshi, P. L.; Sonawane, S. H.; Bhanvase, B. A.; Ashokkumar, M.; Pimplapure, M. S.; Gogate, P. R. Synthesis of Iron Oxide Nanoparticles in a Continuous Flow Spiral Microreactor and Corning® Advanced Flow™ Reactor. Green Processing and Synthesis 2018, 7 (1), 1–11. https://doi.org/10.1515/gps-2016-0138.
- (92) Hessel, V.; Sarafraz, M. M.; Tran, N. N. The Resource Gateway: Microfluidics and Requirements Engineering for Sustainable Space Systems. Chemical Engineering Science 2020, 225, 115774.

^{*}Please note this publication list is provided for reference only and does not constitute an endorsement by Corning Incorporated of any particular publication, institution, author, product or method.

https://doi.org/10.1016/j.ces.2020.1157

^{*}Please note this publication list is provided for reference only and does not constitute an endorsement by Corning Incorporated of any particular publication, institution, author, product or method.