Corning® SMF-28® Ultra 200 Optical Fiber

Product Information

CORNING

ColorPro® Identification

SMF-28 Ultra 200 fiber is also available in colored and ringmarked variants, enabled

by ColorPro® identification

technology. Corning fibers

with ColorPro® identification technology deliver better

efficiency in cable manufacturing,

simplify inventory management,

and leverage an enhanced fiber

Ph: 1-607-248-2000 (U.S./Can.)

Email: cofic@corning.com

attenuation, and quantity when ordering.

Please specify the fiber type,

+44-1244-525-320 (Europe)

product offering.

How to Order

Contact your sales representative, or call the Optical Fiber Customer Service Department:

Technology

Corning's SMF-28® Ultra 200 optical fiber is a single-mode fiber with a reduced coating diameter that leverages the latest technology of Corning® SMF-28® Ultra optical fiber. SMF-28 Ultra 200 shares the same advanced optical performance as SMF-28 Ultra fiber and is designed for use in applications where space is at a premium. SMF-28 Ultra 200 fiber enables maximized fiber count per cable and minimized cable outer diameter while maintaining superior optical and mechanical performance. It has bend performance that exceeds Recommendation ITU-T G.657.A1, and is compatible and fully compliant with Recommendation ITU-T G.652.D.

Optical Specifications

Maximum Attenuation

Wavelength	Maximum Value*
(nm)	(dB/km)
1310	≤ 0.32
1383**	≤ 0.32
1490	≤ 0.21
1550	≤ 0.18
1625	≤ 0.20

^{*}Alternate attenuation offerings available upon request.

Attenuation vs. Wavelength

Range (nm)	Ref. λ (nm)	Max. α Difference (dB/km)
1285 – 1330	1310	0.03
1525 — 1575	1550	0.02

The attenuation in a given wavelength range does not exceed the attenuation of the reference wavelength (λ) by more than the value α .

Macrobend Loss

Mandrel Radius (mm)	Number of Turns	Wavelength (nm)	Induced Attenuation* (dB)
10	1	1550	≤ 0.50
10	1	1625	≤ 1.5
15	10	1550	≤ 0.05
15	10	1625	≤ 0.30
30	100	1625	≤ 0.1

^{*}The induced attenuation due to fiber wrapped around a mandrel of a specified radius.

Point Discontinuity

Wavelength	Point Discontinuity
(nm)	(dB)
1310	≤ 0.05
1550	≤ 0.05

Cable Cutoff Wavelength (λ_{cc})

 $\lambda_{cc} \leq 1260 \text{ nm}$

Mode Field Diameter

Wavelength	Mode Field Diameter
(nm)	(μm)
1310	9.2 ± 0.4
1550	10.4 ± 0.5

Dispersion

Wavelength	Dispersion Value
(nm) _	[ps/(nm•km)]
1550	≤ 18
1625	≤ 22

Zero Dispersion Wavelength (λ_0): 1304 nm $\leq \lambda_0 \leq$ 1324 nm Zero Dispersion Slope (S_0): \leq 0.092 ps/(nm²•km)

Polarization Mode Dispersion (PMD)

	Value (ps/√km)	
PMD Link Design Value	≤ 0.04*	
Maximum Individual Fiber PMD	≤ 0.1	

^{*}Complies with ITU-T G.650-2 Appendix IV, (m = 20, Q = 0.01%), August 2015.

The PMD link design value is a term used to describe the PMD of concatenated lengths of fiber (also known as PMD_Q). This value represents a statistical upper limit for total link PMD. Individual PMD values may change when fiber is cabled.

Issued: November 2021 Supersedes: September 2019

TL9000/ISO 9001 Certified

^{**}Attenuation values at this wavelength represent post-hydrogen aging performance.

Dimensional Specifications

Glass Geometry

Coating Geometry

Fiber Curl	≥ 4.0 m radius of curvature
Cladding Diameter	125.0 ± 0.7 μm
Core-Clad Concentricity	≤ 0.5 μm
Cladding Non-Circularity	≤ 0.7%

Coating Diameter	200 ± 5 μm
Coating-Cladding Concentricity	≤ 10 µm

Environmental Specifications

Environmental Test	Test Condition	Induced Attenuation 1310 nm, 1550 nm, and 1625 nm (dB/km)
Temperature Dependence	-60°C to +85°C*	≤ 0.05
Temperature Humidity Cycling	-10°C to +85°C up to 98% RH	≤ 0.05
Water Immersion	23°C ± 2°C	≤ 0.05
Heat Aging	85°C ± 2°C	≤ 0.05
Damp Heat	85°C at 85% RH	≤ 0.05

Operating Temperature Range: -60°C to +85°C *Reference temperature = +23°C

Mechanical Specifications

Proof Test

The entire fiber length is subjected to a tensile stress ≥ 100 kpsi (0.69 GPa). Higher proof test levels are available.

Length

Fiber lengths available up to 50.4 km/spool.

Performance Characterizations

Characterized parameters are typical values.

Core Diameter	8.2 µm
Numerical Aperture	0.14 NA is measured at the one percent power level of a one-dimensional far-field scan at 1310 nm.
Zero Dispersion Slope (S _o)	0.088 ps/(nm²•km)
Effective Group Index of Refraction (n_{eff})	1310 nm: 1.4676 1550 nm: 1.4682
Fatigue Resistance Parameter (n _d)	20
Coating Strip Force	Dry: 0.5 lbs. (2 N) Wet, 14-day room temperature: 0.5 lbs. (2 N)
Rayleigh Backscatter Coefficient (for 1 ns Pulse Width)	1310 nm: -77 dB 1550 nm: -82 dB