Corning® SMF-28® Ultra Optical Fiber

Product Information

CORNING

ColorPro™ Identification

in colored and ringmarked

identification technology. Corning fibers with ColorPro™

identification technology

variants, enabled by ColorPro™

deliver better efficiency in cable manufacturing, simplify inventory

management, and leverage an enhanced fiber product offering.

SMF-28 Ultra fiber is also available

Technology

How to Order

Contact your sales

representative, or call

Service Department: Ph: 1-607-248-2000 (U.S./Can.)

the Optical Fiber Customer

Email: cofic@corning.com

attenuation, and quantity

when ordering.

Please specify the fiber type,

+44-1244-525-320 (Europe)

Corning® SMF-28® Ultra optical fiber was the first to market to combine the benefit of industryleading attenuation and improved macrobending performance while maintaining compatibility with the existing installed fiber base. This full-spectrum, all-in-one fiber is operational in regional, longhaul, metro, access, mobile, and fiber to the home (FTTH) applications. SMF-28 Ultra fiber has bend performance that exceeds Recommendation ITU-T G.657.A1, and is compatible and fully compliant with Recommendation ITU-T G.652.D.

Optical Specifications

Maximum Attenuation

Wavelength (nm)	Maximum Value* (dB/km)
1310	≤ 0.32
1383**	≤ 0.32
1490	≤ 0.21
1550	≤ 0.18
1625	≤ 0.20

^{*}Alternate attenuation offerings available upon request.

Attenuation vs. Wavelength

Range	Ref. λ	Max. α Difference
(nm)	(nm)	(dB/km)
1285 – 1330	1310	0.03
1525 – 1575	1550	0.02

The attenuation in a given wavelength range does not exceed the attenuation of the reference wavelength (λ) by more than the value α .

Macrobend Loss

Mandrel Radius (mm)	Number of Turns	Wavelength (nm)	Induced Attenuation* (dB)
10	1	1550	≤ 0.50
10	1	1625	≤ 1.5
15	10	1550	≤ 0.05
15	10	1625	≤ 0.30
25	100	1310, 1550, 1625	≤ 0.01

^{*}The induced attenuation due to fiber wrapped around a mandrel of a specified radius.

Point Discontinuity

Wavelength (nm)	Point Discontinuity (dB)
1310	≤ 0.05
1550	≤ 0.05

Cable Cutoff Wavelength (λ_{cc})

λ_{cc} ≤ 1260 nm

Mode Field Diameter

Wavelength	Mode Field Diameter
(nm)	(μm)
1310	9.2 ± 0.4
1550	10.4 ± 0.5

Dispersion

Wavelength (nm)	Dispersion Value [ps/(nm•km)]
1550	≤ 18
1625	≤ 22

Zero Dispersion Wavelength (λ_0): 1304 nm $\leq \lambda_0 \leq$ 1324 nm Zero Dispersion Slope (S_0): $\leq 0.092 \text{ ps/(nm}^2 \cdot \text{km)}$

Polarization Mode Dispersion (PMD)

Value (ps/√km) PMD Link Design Value ≤ 0.04* Maximum Individual Fiber PMD ≤ 0.1

The PMD link design value is a term used to describe the PMD of concatenated lengths of fiber (also known as PMD_Q). This value represents a statistical upper limit for total link PMD. Individual PMD values may change when fiber is cabled.

^{**}Attenuation values at this wavelength represent post-hydrogen aging performance.

^{*}Complies with ITU-T G.650-2 Appendix IV, (m = 20, Q = 0.01%), August 2015.

Dimensional Specifications

Glass Geometry

Coating Geometry

Fiber Curl	≥ 4.0 m radius of curvature
Cladding Diameter	125.0 ± 0.7 μm
Core-Clad Concentricity	≤ 0.5 μm
Cladding Non-Circularity	≤ 0.7%

Coating Diameter	242 ± 5 μm
Coating-Cladding Concentricity	< 12 μm

Environmental Specifications

Environmental Test	Test Condition	Induced Attenuation 1310 nm, 1550 nm, and 1625 nm (dB/km)
Temperature Dependence	-60°C to +85°C*	≤ 0.05
Temperature Humidity Cycling	-10°C to +85°C up to 98% RH	≤ 0.05
Water Immersion	23°C ± 2°C	≤ 0.05
Heat Aging	85°C ± 2°C	≤ 0.05
Damp Heat	85°C at 85% RH	≤ 0.05

Operating Temperature Range: -60°C to +85°C

Mechanical Specifications

Proof Test

The entire fiber length is subjected to a tensile stress ≥ 100 kpsi (0.69 GPa). Higher proof test levels are available.

Length

Fiber lengths available up to 50.4 km/spool.

Performance Characterizations

Characterized parameters are typical values.

Core Diameter	8.2 μm
Numerical Aperture	0.14 NA is measured at the one percent power level of a one-dimensional far-field scan at 1310 nm.
Effective Group Index of Refraction (n _{eff})	1310 nm: 1.4676 1550 nm: 1.4682
Fatigue Resistance Parameter (n _d)	20
Coating Strip Force	Dry: 0.6 lbs. (3 N) Wet, 14-day room temperature: 0.6 lbs. (3 N)
Rayleigh Backscatter Coefficient (for 1 ns Pulse Width)	1310 nm: -77 dB 1550 nm: -82 dB

^{*}Reference temperature = +23°C